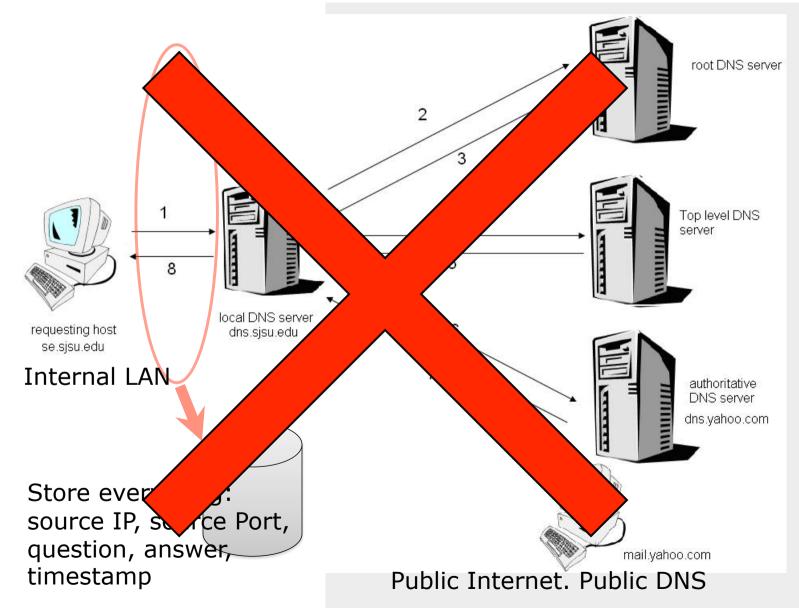
Passive DNS @ AcoNet / CERT.at ("pDNS") a.k.a. "DNS History project"

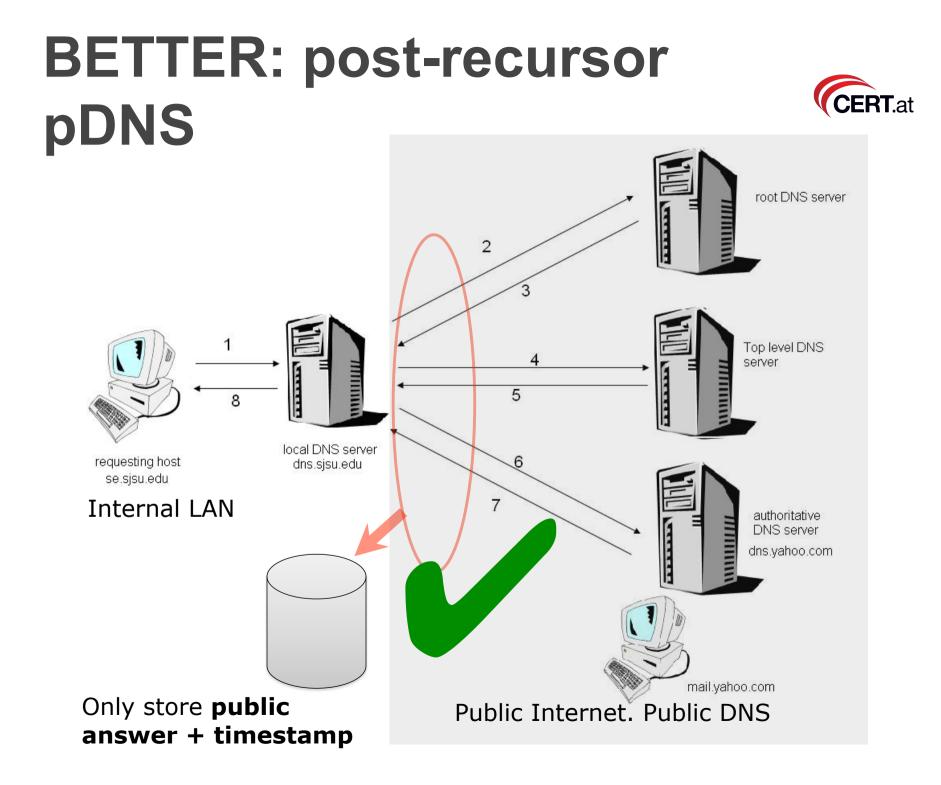
L. Aaron Kaplan <u>kaplan@cert.at</u> Otmar Lendl <u>lendl@cert.at</u>

pDNS

- Idea in a nutshell:
 - Capture the **public DNS answer packet**
 - **at the recursor** (not the authoriative NS)
 - delete source IP, destination IP (← privacy)
 - timestamp the public DNS record and finally
 - Store it in a DB
 - Provide a Query-Interface

Two types of pDNS


 Pre-recursor passive DNS: the store-everything-that-you-can approach


versus

- Post-recursor passive DNS: only store what you really need.
 - Reduces volume
 - Respects privacy
 - Gets the benefit of caching of the recursor

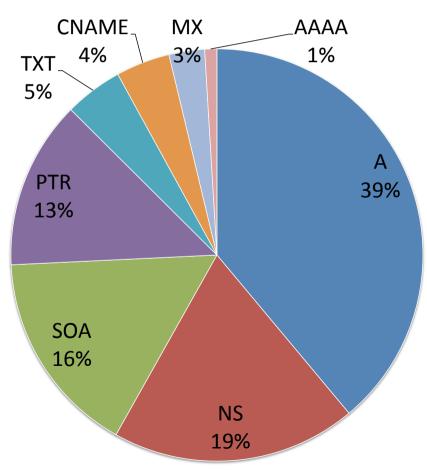
PRE-recursor pDNS (Cisco)

pDNS – the Data

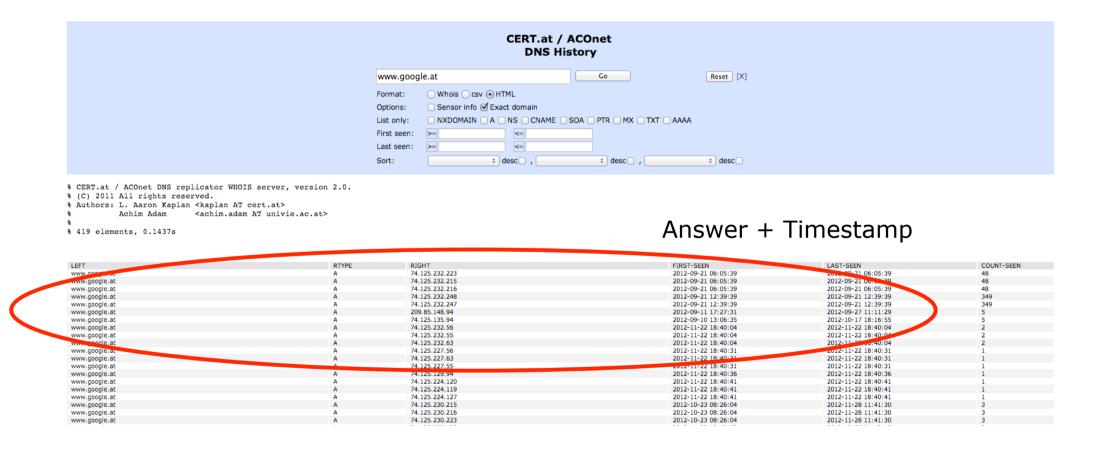
rr-name: www.google.at rr-type: A rr-address: 173.194.35.184 seen-first: 2012-10-22 02:20:34 seen-last: 2014-03-02 20:10:42 count-requested: 40760

Public Data. Anyone on the Internet can query this. We do not know who asked that question

rr-name:	www.google.at
rr-type:	A
rr-address:	173.194.35.191
seen-first:	2012-10-22 02:20:34
seen-last:	2014-03-02 20:10:42
count-requested: 40760	


rr-name:	www.google.at	
rr-type:	A	
rr-address:	173.194.35.183	
seen-first:	2012-10-22 02:20:34	
seen-last:	2014-03-02 20:10:42	
count-requested: 40760		

Our Dataset


- ~ 600 GByte of data
- ~ 2.5 billion rows
- ~ 520M Updates / day
- ~ 96% Last seen
- Lots of caching in RAM

- Based on PostgreSQL
- Using SSDs

Web-Interface for Queries

Alternative UI: whois -h server <question>

Answer which Questions?

- Historic data
 - "What was the A record for a certain FQDN last year?"
- Inverse Lookups
 - "Which domains have A records that are in a given address range?"
- Generic reseach on bulk DNS data
 - T. Frosch, T. Holz: "Predentifier: Detecting Botnet C&C Domains From Passive DNS Data"

Example 1: C&C server

- 1. hair3Choo8aibaaj.foo.ru is a C&C server
- 2. Some PCs get infected
- 3. hair3Choo8aibaaj.foo.ru gets deleted
- 4. The CERT gets the information that hair3Choo8aibaaj.foo.ru was evil. Look at all connections / flows to that domain
- 5. But the domain got deleted. What to do?
- Answer: look into the DNS history → find the IP address → look at netflows and find all infected PCs

Example 2: Is this a bullet proof hoster?

- Step 1: the netblock: 193.104.27.0/24.
 AS12604 /
 Kamushnoy Vladimir
 Vasulyovich suspected BP host
- Step 2: ask pDNS:
- rr-name: <u>ns2.federalbankofnevada.com</u>
 rr-type: A
 rr-address: <u>193.104.27.69</u>
 seen-first: 2010-02-17 09:57:25
 seen-last: 2010-02-21 12:04:29
 rr-name: <u>pharmazoria.com</u>
 rr-type: A
 rr-address: <u>193.104.27.164</u>
 seen-first: 2009-12-03 17:16:39

```
rr-name: WWW.genericmedsusa.com
rr-type: A
rr-address: 193.104.27.162
seen-first: 2009-12-16 16:04:07
seen-last: 2009-12-21 11:47:22
```

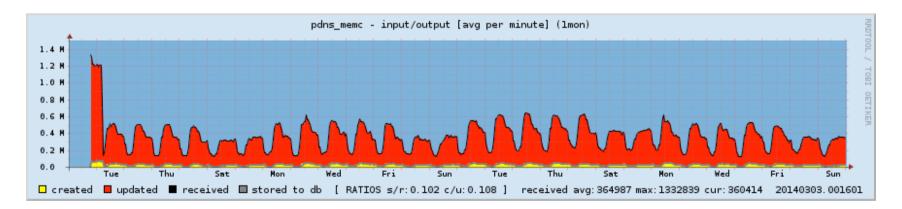
seen-last: 2009-12-30 12:33:43

- Here we found 500+ entries!
- Many very shady records
- Strong indication that this hoster is a Bullet Proof Hoster

Example 3: suspicious domains in my netblock

- Step 1: create a list of known good domains in my network range
- Step 2: ask pDNS for my network range:
- Step 3: make a diff. Find domains which point to your IP range, but you are not aware that they were there!
- We could offer this as a service. Anyone interested?

Example 4: Egypt goes offline


- Egypt goes offline, this poses a research question:
 - What other domains are offline because all of their NS are in egyptian IP space?
 - → we can find out

DATA VOLUME AND TUNING

Data volume

- Creating a pDNS server is easy **BUT** does it blend scale?
- As of 2014: ~ 2.5 Billion entries in a Postgres DB
- Number of DNS answers/minute coming in:

 It was not trivial and took a lot of time to tune the system to be able to handle so much data in PostgreSQL + 100GBytes of RAM + many SSDs.

Data Volume (2)

- Largest pDNS Servers that we are aware of:
 - 1. ISC/Farsight
 - 2. BFK
 - 3. CERT.at/Aconet

Current topics with pDNS

- Multiple implementations (ISC/Farsight, BFK, CERT.at/Aconet, ...)
- Aim: Make them interoperable

Passive DNS - Common Output Format draft-dulaunoy-kaplan-passive-dns-cof-02

- Submitted to the DNSOP WG @ IETF
- Supported by FIRST.org

Participation

- Access to our DB is limited to:
 - Specific reason + signed MoU: researcher or legitimate IT Security (CERTs)
 - Contributors of data
 - Run a sensor
 - Feed in the data, mix it up further with other sensors (mixing is good)
 - The more diverse the user-base of the sensors is, the better the overall data quality

Summary

- It is possible to keep a DNS history while at the same time preserving privacy
- Applications:
 - Research
 - IT Security
 - Monitoring / Alerting of suspicious domains
 - ... your idea?...

kaplan@cert.at, lendl@cert.at

THANK YOU!